Name that Ware, August 2017

August 15th, 2017

The Ware for August 2017 is below.

I removed a bit of context to make it more difficult — if it proves unguessable I’ll zoom out slightly (or perhaps just leave one extra, crucial hint to consider).

Winner, Name that Ware July 2017

August 15th, 2017

The ware for July 2017 is a PMT (photomultiplier tube) module. I’d say wrm gets the prize this month, for getting that it’s a PMT driver first, and for linking to a schematic. :) That’s an easy way to win me over. Gratz, email me to claim your prize!

Name that Ware July 2017

July 27th, 2017

The Ware for July 2017 is shown below.

Decided to do this one with the potting on to make it a smidgen more challenging.

Winner, Name that Ware June 2017

July 27th, 2017

The Ware for June 2017 is an ultrasonic delay line. Picked this beauty up while wandering the junk shops of Akihabara. There’s something elegant about the Old Ways that’s simply irresistible to me…back when the answer to all hard problems was not simply “transform it into the software domain and then compute the snot out of it”.

Grats to plum33 for nailing it! email me for your prize.

That’s a Big Microscope…

July 15th, 2017

I’ve often said that there are no secrets in hardware — you just need a bigger, better microscope.

I think I’ve found the limit to that statement. To give you an idea, here’s the “lightbulb” that powers the microscope:

It’s the size of a building, and it’s the Swiss Light Source. Actually, not all of that building is dedicated to this microscope, just one beamline of an X-ray synchrotron capable of producing photons at an energy of 6.5keV (X-rays) at a flux of close to a billion coherent photons per second — but still, it’s a big light bulb. It might be a while before you see one of these popping up in a hacker’s garage…err, hangar…somewhere.

The result? One can image, in 3-D and “non-destructively” (e.g., without having to delayer or etch away dielectrics), chips down to a resolution of 14.6nm.

That’s a pretty neat trick if you’re trying to reverse engineer modern silicon.

You can read the full article at Nature (“High Resolution non-destructive three-dimensional imaging of integrated circuits” by Mirko Holler et al). I’m a paying subscriber to Nature so I’m supposed to have access to the article, but at the moment, their paywall is throwing a null pointer exception. Once the paywall is fixed you can buy a copy of the article to read, but in the meantime, SciHub seems more reliable.

You get what you pay for, right?